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Abstract

We consider the hypothesis testing problem of detecting a shift between the means
of two multivariate normal distributions in the high-dimensional setting, allowing
for the data dimension p to exceed the sample size n. Our contribution is a new test
statistic for the two-sample test of means that integrates a random projection with
the classical Hotelling T 2 statistic. Working within a high-dimensional framework
that allows (p, n) → ∞, we first derive an asymptotic power function for our
test, and then provide sufficient conditions for it to achieve greater power than
other state-of-the-art tests. Using ROC curves generated from simulated data,
we demonstrate superior performance against competing tests in the parameter
regimes anticipated by our theoretical results. Lastly, we illustrate an advantage
of our procedure with comparisons on a high-dimensional gene expression dataset
involving the discrimination of different types of cancer.

1 Introduction

Two-sample hypothesis tests are concerned with the question of whether two samples of data are
generated from the same distribution. Such tests are among the most widely used inference pro-
cedures in treatment-control studies in science and engineering [1]. Application domains such
as molecular biology and fMRI have stimulated considerable interest in detecting shifts between
distributions in the high-dimensional setting, where the two samples of data {X1, . . . , Xn1

} and
{Y1, . . . , Yn2

} are subsets of Rp, and n1, n2 � p [e.g., 2–5]. In transcriptomics, for instance, p
gene expression measures on the order of hundreds or thousands may be used to investigate differ-
ences between two biological conditions, and it is often difficult to obtain sample sizes n1 and n2

larger than several dozen in each condition. In high-dimensional situations such as these, classical
methods may be ineffective, or not applicable at all. Likewise, there has been growing interest in
developing testing procedures that are better suited to deal with the effects of dimension [e.g., 6–10].

A fundamental instance of the general two-sample problem is the two-sample test of means with
Gaussian data. In this case, two independent sets of samples {X1, . . . , Xn1

} and {Y1, . . . , Yn2
} are

generated in an i.i.d. manner from p-dimensional multivariate normal distributions N(µ1,Σ) and
N(µ2,Σ) respectively, where the mean vectors µ1, µ2 ∈ Rp and covariance matrix Σ � 0 are all
fixed and unknown. The hypothesis testing problem of interest is

H0 : µ1 = µ2 versus H1 : µ1 6= µ2. (1)

The most well-known test statistic for this problem is the Hotelling T 2 statistic, defined by

T 2 :=
n1 n2

n1 + n2
(X̄ − Ȳ )>Σ̂−1 (X̄ − Ȳ ), (2)
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where X̄ := 1
n1

∑n1

j=1Xj and Ȳ := 1
n2

∑n2

j=1 Yj are the sample means, and Σ̂ is the pooled sample
covariance matrix, given by Σ̂ := 1

n

∑n1
j=1(Xj − X̄)(Xj − X̄)> + 1

n

∑n2
j=1(Yj − Ȳ )(Yj − Ȳ )>, with

n := n1 + n2 − 2.

When p > n, the matrix Σ̂ is singular, and the Hotelling test is not well-defined. Even when
p ≤ n, the Hotelling test is known to perform poorly if p is nearly as large as n. This behavior
was demonstrated in a seminal paper of Bai and Saranadasa [6] (or BS for short), who studied the
performance of the Hotelling test under (p, n) → ∞ with p/n → 1 − ε, and showed that the
asymptotic power of the test suffers for small values of ε > 0. In subsequent years, a number of
improvements on the Hotelling test in the high-dimensional setting have been proposed [e.g., 6–9].

In this paper, we propose a new test statistic for the two-sample test of means with multivariate
normal data, applicable when p ≥ n/2. We provide an explicit asymptotic power function for
our test with (p, n) → ∞, and show that under certain conditions, our test has greater asymptotic
power than other state-of-the-art tests. These comparison results are valid with p/n tending to a
positive constant or infinity. In addition to its advantage in terms of asymptotic power, our procedure
specifies exact level-α critical values for multivariate normal data, whereas competing procedures
offer only approximate level-α critical values. Furthermore, our experiments in Section 4 suggest
that the critical values of our test may also be more robust than those of competing tests. Lastly, the
computational cost of our procedure is modest in the n < p setting, being of order O(n2p).

The remainder of this paper is organized as follows. In Section 2, we provide background on hy-
pothesis testing and describe our testing procedure. Section 3 is devoted to a number of theoretical
results about its performance. Theorem 1 in Section 3.1 provides an asymptotic power function,
and Theorems 2 and 3 in Sections 3.3 and 3.4 give sufficient conditions for achieving greater power
than state-of-the-art tests in the sense of asymptotic relative efficiency. In Section 4 we provide
performance comparisons with ROC curves on synthetic data against a broader collection of meth-
ods, including some recent kernel-based and non-parametric approaches such as MMD [11], KFDA
[12], and TreeRank [10]. Lastly, we study a high-dimensional gene expression dataset involving the
discrimination of different cancer types, demonstrating that our test’s false positive rate is reliable in
practice. We refer the reader to the preprint [13] for proofs of our theoretical results.

Notation. Let δ := µ1 − µ2 denote the shift vector between the distributions N(µ1,Σ) and
N(µ2,Σ), and define the ordered pair of parameters θ := (δ,Σ). Let z1−α denote the 1 − α
quantile of the standard normal distribution, and let Φ be its cumulative distribution function. If A
is a matrix in Rp×p, let |||A|||2 denote its spectral norm (maximum singular value), and define the

Frobenius norm |||A|||F :=
√∑

i,j A
2
ij . When all the eigenvalues of A are real, we denote them

by λmin(A) = λp(A) ≤ · · · ≤ λ1(A) = λmax(A). For a positive-definite covariance matrix Σ,
let Dσ := diag(Σ), and define the associated correlation matrix R := D

−1/2
σ ΣD

−1/2
σ . We use the

notation f(n) . g(n) if there is some absolute constant c such that the inequality f(n) ≤ c n holds
for all large n. If both f(n) . g(n) and g(n) . f(n) hold, then we write f(n) � g(n). The
notation f(n) = o(g(n)) means f(n)/g(n)→ 0 as n→∞.

2 Background and random projection method

For the remainder of the paper, we retain the set-up for the two-sample test of means (1) with
Gaussian data, assuming throughout that p ≥ n/2, and n = n1 + n2 − 2.

Review of hypothesis testing terminology. The primary focus of our results will be on the compar-
ison of power between test statistics, and here we give precise meaning to this notion. When testing
a null hypothesis H0 versus an alternative hypothesis H1, a procedure based on a test statistic T
specifies a critical value, such that H0 is rejected if T exceeds that critical value, and H0 is ac-
cepted otherwise. The chosen critical value fixes a trade-off between the risk of rejecting H0 when
H0 actually holds, and the risk of accepting H0 when H1 holds. The former error is referred to as
a type I error and the latter as a type II error. A test is said to have level α if the probability of com-
mitting a type I error is at most α. Finally, at a given level α, the power of a test is the probability
of rejecting H0 under H1, i.e., 1 minus the probability of a type II error. When evaluating testing
procedures at a given level α, we seek to identify the one with the greatest power.
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Past work. The Hotelling T 2 statistic (2) discriminates between the hypotheses H0 and H1 by pro-
viding an estimate of the “statistical distance” separating the distributions N(µ1,Σ) and N(µ2,Σ).
More specifically, the Hotelling statistic is essentially an estimate of the Kullback-Leibler (KL) di-
vergence DKL

(
N(µ1,Σ)‖N(µ2,Σ)

)
= 1

2δ
>Σ−1δ, where δ := µ1 − µ2. Due to the fact that the

pooled sample covariance matrix Σ̂ in the definition of T 2 is not invertible when p > n, several
recent procedures have offered substitutes for the Hotelling statistic in the high-dimensional setting:
Bai and Saranadasa [6], Srivastava and Du [7, 8], Chen and Qin [9], hereafter BS, SD and CQ re-
spectively. Up to now, the route toward circumventing this difficulty has been to form an estimate of
Σ that is diagonal, and hence easily invertible. We shall see later that this limited use of covariance
structure sacrifices power when the data exhibit non-trivial correlation. In this regard, our proce-
dure is motivated by the idea that covariance structure may be used more effectively by testing with
projected samples in a space of lower dimension.

Intuition for random projection. To provide some further intuition for our method, it is possible
to consider the problem (1) in terms of a competition between the dimension p, and the statistical
distance separating H0 and H1. On one hand, the accumulation of variance from a large number
of variables makes it difficult to discriminate between the hypotheses, and thus, it is desirable to
reduce the dimension of the data. On the other hand, most methods for reducing dimension will also
bring H0 and H1 “closer together,” making them harder to distinguish. Mindful of the fact that the
Hotelling test measures the separation of H0 and H1 in terms of δ>Σ−1δ, we see that the statistical
distance is driven by the Euclidean length of δ. Consequently, we seek to transform the data in such
a way that the dimension is reduced, while the length of the shift δ is mostly preserved upon passing
to the transformed distributions. From this geometric point of view, it is natural to exploit the fact
that random projections can simultaneously reduce dimension and approximately preserve lengths
with high probability [14]. The use of projection-based test statistics has been considered previously
in Jacob et al., [15], Clémençon et al. [10], and Cuesta-Albertos et al. [16].

At a high level, our method can be viewed as a two step procedure. First, a single random projection
is drawn, and is used to map the samples from the high-dimensional space Rp to a low-dimensional
space1 Rk, with k := bn/2c. Second, the Hotelling T 2 test is applied to a new hypothesis testing
problem, H0,proj versus H1,proj, in the projected space. A decision is then pulled back to the original
problem by simply rejecting H0 whenever the Hotelling test rejects H0,proj.

Formal testing procedure. Let P>k ∈ Rk×p denote a random projection with i.i.d. N(0, 1) entries,
drawn independently of the data, where k = bn/2c. Conditioning on the drawn matrix P>k , the
projected samples {P>k X1, . . . , P

>
k Xn1

} and {P>k Y1, . . . , P
>
k Yn2

} are distributed i.i.d. according
to N(P>k µi, P

>
k ΣPk) respectively, with i = 1, 2. Since n ≥ k, the projected data satisfy the usual

conditions [17, p. 211] for applying the Hotelling T 2 procedure to the following new two-sample
problem in the projected space Rk:

H0,proj : P>k µ1 = P>k µ2 versus H1,proj : P>k µ1 6= P>k µ2. (3)

For this projected problem, the Hotelling test statistic takes the form2

T 2
k := n1n2

n1+n2
(X̄ − Ȳ )>Pk(P>k Σ̂Pk)−1P>k (X̄ − Ȳ ),

where X̄ , Ȳ , and Σ̂ are as defined in Section 1. Lastly, define the critical value tα :=
k n

n−k+1F
∗
k,n−k+1(α), where F ∗k,n−k+1(α) is the upper α quantile of the Fk,n−k+1 distribution [17].

It is a basic fact about the classical Hotelling test that rejecting H0,proj when T 2
k ≥ tα is a level-α

test for the projected problem (3) (e.g., see Muirhead [17, p.217]). Inspection of the formula for T 2
k

shows that its distribution is the same under both H0 and H0,proj. Therefore, rejecting the original
H0 when T 2

k ≥ tα is also a level α test for the original problem (1). Likewise, we define this as the
condition for rejecting H0 at level α in our procedure for (1). We summarize our procedure below.

1The choice of projected dimension k = bn/2c is explained in the preprint [13].
2Note that P>

k Σ̂Pk is invertible with probability 1 when P>
k has i.i.d. N(0, 1) entries.
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1. Generate a single random matrix P>k with i.i.d. N(0, 1) entries.

2. Compute T 2
k , using P>k and the two sets of samples.

3. If T 2
k ≥ tα, reject H0; otherwise accept H0.

(?)

Projected Hotelling test at level α for problem (1).

3 Main results and their consequences

This section is devoted to the statement and discussion of our main theoretical results, including
a characterization of the asymptotic power function of our test (Theorem 1), and comparisons of
asymptotic relative efficiency with state-of-the-art tests proposed in past work (Theorems 2 and 3).

3.1 Asymptotic power function

As is standard in high-dimensional asymptotics, we will consider a sequence of hypothesis testing
problems indexed by n, allowing the dimension p, mean vectors µ1 and µ2 and covariance matrix
Σ to implicitly vary as functions of n, with n → ∞. We also make another type of asymptotic
assumption, known as a local alternative [18, p.193], which is commonplace in hypothesis testing.
The idea lying behind a local alternative assumption is that if the difficulty of discriminating between
H0 and H1 is “held fixed” with respect to n, then it is often the case that most testing procedures
have power tending to 1 under H1 as n → ∞. In such a situation, it is not possible to tell if one
test has greater asymptotic power than another. Consequently, it is standard to derive asymptotic
power results under the extra condition that H0 and H1 become harder to distinguish as n grows.
This theoretical device aids in identifying the conditions under which one test is more powerful
than another. The following local alternative (A1), and balancing assumption (A2), are similar to
those used in previous works [6–9] on problem (1). In particular, condition (A1) means that the
KL-divergence between N(µ1,Σ) and N(µ2,Σ) tends to 0 as n→∞.

(A1) Suppose that δ>Σ−1δ = o(1).
(A2) Let there be a constant b ∈ (0, 1) such that n1/n→ b.

To set the notation for Theorem 1, it is important to notice that each time the procedure (?) is im-
plemented, a draw of P>k induces a new test statistic T 2

k . To make this dependence clear, recall
θ := (δ,Σ), and let β(θ;P>k ) denote the exact (non-asymptotic) power function of our level-α
test for problem (1), induced by a draw of P>k , as in (?). Another key quantity that depends on
P>k is the KL-divergence between the projected sampling distributions N(P>k µ1, P

>
k ΣPk) and

N(P>k µ2, P
>
k ΣPk). We denote this divergence by 1

2∆2
k, and a simple calculation shows that

1
2∆2

k = 1
2δ
>Pk(P>k ΣPk)−1P>k δ.

Theorem 1. Under conditions (A1) and (A2), for almost all sequences of projections P>k ,

β(θ;P>k )− Φ
(
−z1−α + b(1−b)√

2

√
n∆2

k

)
→ 0 as n→∞. (4)

Remarks. Note that if ∆2
k = 0, e.g. under H0, then Φ(−z1−α+0) = α, which corresponds to blind

guessing at level α. Consequently, the second term (b(1− b)/
√

2)
√
n∆2

k determines the advantage
of our procedure over blind guessing. Since ∆2

k is proportional to the KL-divergence between the
projected sampling distributions, these observations conform to the intuition from Section 2 that the
KL-divergence measures the discrepancy between H0 and H1.

3.2 Asymptotic relative efficiency (ARE)

Having derived an asymptotic power function for our test in Theorem 1, we are now in position to
provide sufficient conditions for achieving greater power than two other recent procedures for prob-
lem (1): Srivastava and Du [7, 8] (SD), and Chen and Qin [9] (CQ). To the best of our knowledge,
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these works represent the state of the art3 among tests for problem (1) with a known asymptotic
power function under (p, n)→∞.

From Theorem 1, the asymptotic power function of our random projection-based test at level α is

βRP(θ;P>k ) := Φ
(
−z1−α + b(1−b)√

2

√
n∆2

k

)
. (5)

The asymptotic power functions for the CQ and SD testing procedures at level α are

βCQ(θ) := Φ
(
−z1−α + b(1−b)√

2

n ‖δ‖22
|||Σ|||F

)
, and βSD(θ) := Φ

(
−z1−α + b(1−b)√

2

n δ>D−1
σ δ

|||R|||F

)
.

Recall that Dσ := diag(Σ), and R denotes the correlation matrix associated with Σ. The functions
βCQ and βSD are derived under local alternatives and asymptotic assumptions that are similar to the
ones used here to obtain βRP. In particular, all three functions can be obtained allowing p/n to tend
to an arbitrary positive constant or infinity.

A standard method of comparing asymptotic power functions under local alternatives is through
the concept of asymptotic relative efficiency (ARE) e.g., see van der Vaart [18, p.192]). Since Φ is
monotone increasing, the term added to −z1−α inside the Φ functions above controls the power. To
compare power between tests, the ARE is simply defined via the ratio of such terms. More explicitly,

we define ARE (βCQ;βRP) :=
(
n ‖δ‖22
|||Σ|||F

/√
n∆2

k

)2

, and ARE (βSD;βRP) :=
(
n δ>D−1

σ δ
|||R|||F

/√
n∆2

k

)2

.

Whenever the ARE is less than 1, our procedure is considered to have greater asymptotic power than
the competing test—with our advantage being greater for smaller values of the ARE. Consequently,
we seek sufficient conditions in Theorems 2 and 3 for ensuring that the ARE is small.

In the present context, the analysis of ARE is complicated by the fact that the ARE varies with
n and depends on a random draw of P>k through ∆2

k. Moreover, the quantity ∆2
k, and hence the

ARE, are affected by the orientation of δ with respect to the eigenvectors of Σ. In order to consider
an average-case scenario, where no single orientation of δ is of particular importance, we place a
prior on the unit vector δ/‖δ‖2, and assume that it is uniformly distributed on the unit sphere of Rp.
We emphasize that our procedure (?) does not rely on this assumption, and that it is only a device
for making an average-case comparison. Therefore, to be clear about the meaning of Theorems 2
and 3, we regard the ARE as a function two random objects, P>k and δ/‖δ‖2, and our probability
statements are made with this understanding. We complete the preparation for our comparison
theorems by isolating four assumptions with n→∞.

(A3) The vector δ
‖δ‖2 is uniformly distributed on the p-dimensional unit sphere, independent of P>k .

(A4) There is a constant a ∈ [0, 1) such that k/p→ a.
(A5) The ratio 1√

k
tr(Σ)

/
(p λmin(Σ)) = o(1).

(A6) The matrix Dσ = diag(Σ) satisfies
|||D−1

σ |||2
tr(D−1

σ )
= o(1).

3.3 Comparison with Chen and Qin [9]

The next result compares the asymptotic power of our projection-based test with that of Chen and
Qin [9]. The choice of ε1 = 1 below (and in Theorem 3) is the reference for equal asymptotic
performance, with smaller values of ε1 corresponding to better performance of random projection.

Theorem 2. Assume conditions (A3), (A4), and (A5). Fix a number ε1 > 0, and let c(ε1) be any
constant strictly greater than 4

ε1 (1−
√
a)4

. If the inequality

n ≥ c(ε1) tr(Σ)2

|||Σ|||2F
(6)

holds for all large n, then P [ARE (βCQ;βRP) ≤ ε1]→ 1 as n→∞.

Interpretation. To interpret the result, note that Jensen’s inequality implies that for any choice of
Σ, we have 1 ≤ tr(Σ)2

/
|||Σ|||2F ≤ p. As such, it is reasonable to interpret this ratio as a measure of

3Two other high-dimensional tests have been proposed in older works [6, 19, 20] that lead to the asymptotic
power function βCQ, but under more restrictive assumptions.

5



the effective dimension of the covariance structure. The message of Theorem 2 is that as long as
the sample size n exceeds the effective dimension, then our projection-based test is asymptotically
superior to CQ. The ratio tr(Σ)2/ |||Σ|||2F can also be viewed as measuring the decay rate of the
spectrum of Σ, with tr(Σ)2

/
|||Σ|||2F � p indicating rapid decay. This condition means that the data

has low variance in “most” directions in Rp, and so projecting onto a random set of k directions will
likely map the data into a low-variance subspace in which it is harder for chance variation to explain
away the correct hypothesis, thereby resulting in greater power.

3.4 Comparison with Srivastava and Du [7, 8]

We now turn to comparison of asymptotic power with the test of Srivastava and Du (SD).

Theorem 3. In addition to the conditions of Theorem 2, assume that condition (A6) holds. Fix a
number ε1 > 0, and let c(ε1) be any constant strictly greater than 4

ε1 (1−
√
a)4

. If the inequality

n ≥ c(ε1)
(

tr(Σ)
p

)2 (
tr(D−1

σ )
|||R|||F

)2

(7)

holds for all large large n, then P [ARE (βSD;βRP) ≤ ε1]→ 1 as n→∞.

Interpretation. Unlike the comparison with the CQ test, the correlation matrix R plays a large role
in determining the relative efficiency between our procedure and the SD test. The correlation matrix
enters in two different ways. First, the Frobenius norm |||R|||F is larger when the data variables are
more correlated. Second, correlation mitigates the growth of tr(D−1

σ ), since this trace is largest
when Σ is nearly diagonal and has a large number of small eigenvalues. Inspection of the SD test
statistic in [7] shows that it does not make any essential use of correlation. By contrast, our T 2

k
statistic does take correlation into account, and so it is understandable that correlated data enhance
the performance of our test relative to SD.

As a simple example, let ρ ∈ (0, 1) and consider a highly correlated situation where all variables
have ρ correlation will all other variables. Then, R = (1− ρ)Ip×p + ρ11> where 1 ∈ Rp is the all
ones vector. We may also let Σ = R for simplicity. In this case, we see that |||R|||2F = p+ 2

(
p
2

)
ρ2 &

p2, and tr(D−1
σ )2 = tr(Ip×p)

2 = p2. This implies tr(D−1
σ )2

/
|||R|||2F . 1 and tr(Σ)/p = 1, and

then the sufficient condition (7) for outperforming SD is easily satisfied in terms of rates. We could
even let the correlation ρ decay at a rate of n−q with q ∈ (0, 1/2), and (7) would still be satisfied
for large enough n. More generally, it is not necessary to use specially constructed covariance
matrices Σ to demonstrate the superior performance of our method. Section 4 illustrates simulations
involving randomly selected covariance matrices where T 2

k is more powerful than SD.

Conversely, it is possible to show that condition (7) requires non-trivial correlation. To see this,
first note that in the complete absence of correlation, we have |||R|||2F = |||Ip×p|||2F = p. Jensen’s

inequality implies that tr(D−1
σ ) ≥ p2

tr(Dσ) = p2

tr(Σ) , and so
(

tr(Σ)
p

)2 (
tr(D−1

σ

|||R|||F

)2

≥ p. Altogether,
this shows if the data exhibits very low correlation, then (7) cannot hold when p grows faster than
n. This will be illustrated in the simulations of Section 4.

4 Performance comparisons on real and synthetic data

In this section, we compare our procedure to state-of-the-art methods on real and synthetic data,
illustrating the effects of the different factors involved in Theorems 2 and 3.

Comparison on synthetic data. In order to validate the consequences of our theory and compare
against other methods in a controlled fashion, we performed simulations in four settings: slow/fast
spectrum decay, and diagonal/random covariance structure. To consider two rates of spectrum decay,
we selected p equally spaced values between 0.01 and 1, and raised them to the power 20 for fast
decay and the power 5 for slow decay. Random covariance structure was generated by specifying
the eigenvectors of Σ as the column vectors of the orthogonal component of a QR decomposition of
a p × p matrix with i.i.d. N(0, 1) entries. In all cases, we sampled n1 = n2 = 50 data points from
two multivariate normal distributions in p = 200 dimensions, and repeated the process 500 times
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with δ = 0 for H0, and 500 times with ‖δ‖2 = 1 for H1. In the case of H1, δ was drawn uniformly
from the unit sphere, as in Theorems 2 and 3. We fixed the total amount of variance by setting
|||Σ|||F = 50 in all cases. In addition to our random projection (RP)-based test, we implemented
the methods of BS [6], SD [7], and CQ [9], all of which are designed specifically for problem
(1) in the high-dimensional setting. For the sake of completeness, we also compare against recent
non-parametric procedures for the general two-sample problem that are based on kernel methods
(MMD) [11] and (KFDA) [12], as well as area-under-curve maximization (TreeRank) [10].

The ROC curves from our simulations are displayed in the left block of four panels in Figure 1.
These curves bear out the results of Theorems 2 and 3 in several ways. First notice that fast spectral
decay improves the performance of our test relative to CQ, as expected from Theorem 2. If we set
a = 0 and ε1 = 1 in Theorem 2, then condition (6) for outperforming CQ is approximately n ≥ 75
in the case of fast decay. Given that n = 50 + 50− 2 = 98, the advantage of our method over CQ
in panels (b) and (d) is consistent with condition (6) being satisfied. In the case of slow decay, the
same settings of a and ε1 indicate that n ≥ 246 is sufficient for outperforming CQ. Since the ROC
curve of our method is roughly the same as that of CQ in panels (a) and (c) (where again n = 98),
our condition (6) is somewhat conservative for slow decay at the finite sample level.

To study the consequences of Theorem 3, observe that when the covariance matrix Σ is generated
randomly, the amount of correlation is much larger than in the idealized case that Σ is diagonal.
Specifically, for a fixed value of tr(Σ), the quantity tr(D−1

σ )/ |||R|||F , is much smaller in in the
presence of correlation. Consequently, when comparing (a) with (c), and (b) with (d), we see that
correlation improves the performance of our test relative to SD, as expected from the bound in
Theorem 3. More generally, the ROC curves illustrate that our method has an overall advantage
over BS, CQ, KFDA, and MMD. Note that KFDA and MMD are not designed specifically for the
n � p regime. In the case of zero correlation, it is notable that the TreeRank procedure displays a
superior ROC curve to our method, given that it also employs a dimension reduction strategy.
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Figure 1: Left and middle panels: ROC curves of several test statistics for two different choices of
correlation structure and decay rate. (a) Diagonal covariance slow decay, (b) Diagonal covariance
fast decay, (c) Random covariance slow decay, (d) Random covariance fast decay. Right panels: (e)
False positive rate against p-value threshold on the gene expression experiment of Section 4 for RP
(?), BS, CQ, SD and enrichment test, (f) zoom on the p-value < 0.1 region.
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Comparison on high-dimensional gene expression data. The ability to identify gene sets having
different expression between two types of conditions, e.g., benign and malignant forms of a disease,
is of great value in many areas of biomedical research. Likewise, there is considerable motivation to
study our procedure in the context of detecting differential expression of p genes between two small
groups of patients of sizes n1 and n2.

To compare the performance our T 2
k statistic against competitors CQ and SD in this type of appli-

cation, we constructed a collection of 1680 distinct two-sample problems in the following manner,
using data from three genomic studies of ovarian [21], myeloma [22] and colorectal [23] cancers.

First, we randomly split the 3 datasets respectively into 6, 4, and 6 groups of approximately 50
patients. Next, we considered pairwise comparisons between all sets of patients on each of 14
biologically meaningful gene sets from the canonical pathways of MSigDB [24], with each gene set
containing between 75 and 128 genes. Since n1 ' n2 ' 50 for all patient sets, our collection of two-
sample problems is genuinely high-dimensional. Specifically, we have 14×(

(
6
2

)
+
(

4
2

)
+
(

6
2

)
) = 504

problems under H0 and 14× (6 ·4 + 6 ·4 + 6 ·6) = 1176 problems under H1—assuming that every
gene set was differentially expressed between two sets of patients with different cancers, and that no
gene set was differentially expressed between two sets of patients with the same cancer type.4

A natural performance measure for comparing test statistics is the actual false positive rate (FPR)
as a function of the nominal level α. When testing at level α, the actual FPR should be as close to α
as possible, but differences may occur if the distribution of the test statistic under H0 is not known
exactly (as is the case in practice). Figure 1 (e) shows that the curve for our procedure is closer to
the optimal diagonal line for most values of α than the competing curves. Furthermore, the lower-
left corner of Figure 1 (e) is of particular importance, as practitioners are usually only interested in
p-values lower than 10−1. Figure 1 (f) is a zoomed plot of this region and shows that the SD and
CQ tests commit too many false positives at low thresholds. Again, in this regime, our procedure
is closer to the diagonal and safely commits fewer than the allowed number of false positives. For
example, when thresholding p-values at 0.01, SD has an actual FPR of 0.03, and an even more
excessive FPR of 0.02 when thresholding at 0.001. The tests of CQ and BS are no better. The same
thresholds on the p-values of our test lead to false positive rates of 0.008 and 0 respectively.

With consideration to ROC curves, the samples arising from different cancer types are dissimilar
enough that BS, CQ, SD, and our method all obtain perfect ROC curves (no H1 case has a larger p-
value than any H0 case). We also note that the hypergeometric test-based (HG) enrichment analysis
often used by experimentalists on this problem [25] gives a suboptimal area-under-curve of 0.989.

5 Conclusion

We have proposed a novel testing procedure for the two-sample test of means in high dimensions.
This procedure can be implemented in a simple manner by first projecting a dataset with a single
randomly drawn matrix, and then applying the standard Hotelling T 2 test in the projected space. In
addition to obtaining the asymptotic power of this test, we have provided interpretable conditions on
the covariance matrix Σ for achieving greater power than competing tests in the sense of asymptotic
relative efficiency. Specifically, our theoretical comparisons show that our test is well suited to
interesting regimes where most of the variance in the data can be captured in a relatively small
number of variables, or where the variables are highly correlated. Furthermore, in the realistic case
of (n, p) = (98, 200), these regimes were shown to correspond to favorable performance of our test
against several competitors in ROC curve comparisons on simulated data. Finally, we showed on
real gene expression data that our procedure was more reliable than competitors in terms of its false
positive rate. Extensions of this work may include more refined applications of random projection
to high-dimensional testing problems.
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4Although this assumption could be violated by the existence of various cancer subtypes, or technical dif-
ferences between original tissue samples, our initial step of randomly splitting the three cancer datasets into
subsets guards against these effects.
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