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ABSTRACT For several decades, sequence alignment has been a widely used tool in bioinformatics. For instance, finding homologous sequences
with a known function in large databases is used to get insight into the function of nonannotated genomic regions. Very efficient tools like BLAST
have been developed to identify and rank possible homologous sequences. To estimate the significance of the homology, the ranking of
alignment scores takes a background model for random sequences into account. Using this model we can estimate the probability to find two
exactly matching subsequences by chance in two unrelated sequences. For two homologous sequences, the corresponding probability is much
higher, which allows us to identify them. Here we focus on the distribution of lengths of exact sequence matches between protein-coding regions
of pairs of evolutionarily distant genomes. We show that this distribution exhibits a power-law tail with an exponent a ¼ 2 5: Developing a
simple model of sequence evolution by substitutions and segmental duplications, we show analytically and computationally that paralogous and
orthologous gene pairs contribute differently to this distribution. Our model explains the differences observed in the comparison of coding and
noncoding parts of genomes, thus providing a better understanding of statistical properties of genomic sequences and their evolution.
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ONE of the first and most celebrated bioinformatic tools is
sequence alignment (Needleman and Wunsch 1970;

Smith and Waterman 1981; Altschul et al. 1990), and algo-
rithms to search for similarity between sequences in a huge
database are still actively studied.

For this matter, we need to be able to distinguish sequence
alignments that are due to a biological relatedness of two
sequences from those that occur randomly. Let us, for simplicity,
disregard mismatching nucleotides and insertions and deletions
(indels or gaps) in an alignment and consider only so-called
maximal exact matches, i.e., sequences that are 100% identical
and cannot be extended on both ends. In this case, the length

distribution of matches is equivalent to the score distribution
and can easily be calculated for an alignment of two random
sequences where each nucleotide represents an i.i.d. random
variable. We expect the number of matches to be distributed
according to a geometric distribution, such that the number,
MðrÞ; of exact maximal matches of length r is given by

MðrÞ¼ prð12pÞ2LALB; (1)

where LA and LB are the lengths of the two genomes, pr is the
probability that r nucleotides match, and ð12pÞ2 is the prob-
ability that a match is flanked by two mismatches. Here
p ¼ P

a fAðaÞ fBðaÞ; where fXðaÞ is the frequency of nucleo-
tide a in the genome of species X and the sum is taken over all
nucleotides. Thus, the number of matches for a given length r
is expected to decrease very fast as the length r increases, and
for generic random genomes of hundreds of megabase pairs,
we do not expect any match .25 bp.

For long matches, real genomes strongly violate the pre-
diction of Equation 1 due to the evolutionary relationships
between and within genomes (Salerno et al. 2006). Comparing
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the genomes of recently diverged species, wefind regions in the
two genomes that have not acquired even a single substitution.
In the following, substitution refers to any genomic change that
would disrupt a 100% identical match (for instance, a nucleo-
tide exchange, an insertion, or a deletion). As the divergence
time between the two species increases, such matches will
get smaller very fast and most remaining long matches will
be found either in exons or in ultraconserved elements
(Bejerano et al. 2004) that both evolve under purifying
selection.

Computing the match length distribution (MLD) from the
comparison of human and mouse genomes, we thus expect to
observe much longer exact matches than in a comparison of
two random sequences of the same lengths. The observed
MLD for exons and noncoding sequences in the human and
mouse RepeatMasked genomes is shown in Figure 1. At the
left end of the distribution, i.e., for r , 25 bp, the distribution
is dominated by random matches, as described by Equation 1.
As expected, this MLD deviates from the random model for
matches .25 bp.

Interestingly, in this asymptotic regime, the MLD exhibits a
power-law tail MðrÞ � ra. In the comparison of exonic se-
quences, the exponent a is close to –5, in contrast to the
MLD of noncoding sequences, where the exponent a is close
to –4 (Gao and Miller 2011, 2014; Massip et al. 2015). This
property appears to be impressively reproducible in the com-
parison of various pairs of species (see Supplemental Mate-
rial, File S1, Figure S1). In all cases, the value of a was
calculated using the maximum-likelihood estimator. To as-
sess the robustness of this estimator, we also performed a
bootstrap analysis that showed good agreement with the es-
timated value of a; see Materials and Methods. Note also that
discrepancies of the power-law behavior can be observed for
very long matches, since such matches are scarce and random
noise distorts the distributions.

It is tempting to speculate that this peculiar behavior of
exonic sequences is a direct consequence of their coding
function. However, we demonstrate in the following that this
distribution can be accounted for by a simple evolutionary
model that takes into account the generation of paralogous
sequences (due to segmental duplications) and orthologous
sequences (due to speciation) (Fitch 2000). Further, we as-
sume that paralogous and orthologous exact matches are
subsequently broken down by random substitutions. These
dynamics can be modeled by a well-known stick-breaking
process (Kuhn 1930; Ziff and McGrady 1985) introduced
below. Since our model describes the existence of long match-
ing sequence segments in two genomes, it also has to include
selection. However, we model selection in a minimal way,
since we assume only that regional substitution rates are
distributed, such that there are regions that evolve very
slowly. Our model can therefore be viewed as a minimal
model for evolution of functional sequences, which repro-
duces certain statistical features of their score distributions.
In the next section, we describe the main methods and the
data analyzed in this article.

Materials and Methods

Computational and statistical analysis

Computing MLDs: To find all identical matches (both in the
case of self and comparative alignments), we used the mummer
pipeline (Kurtz et al. 2004) (version 3.0), which allows us to
find all maximal exact matches between a “query” and a refer-
ence sequence using a computationally efficient suffix tree ap-
proach. For our analyses, we used the following options:
-maxmatch such that mummer searches for all matches regard-
less of their uniqueness; -n that states that only 9A9, 9T9, 9C9, and
9G9 can match; -b such that mummer searches for matches on
both strands; and -l 20 to filter out matches ,20 bp.

The number of matches expected for a random i.i.d. se-
quence grows quadratically with L. For instance, we expect
3.5 3 1016 matches of length 2 in a comparison of two se-
quences of length L = 109 bp (see Equation 1). For this rea-
son, we have to define a threshold for the length of matches
that mummer should output especially when comparing en-
tire eukaryotic genomes.

Logarithmic binning: Power laws appear in the tail of dis-
tributions, meaning that they are associated to rare events,
which are thus subject to strong fluctuations. The high impact
of noise in the tail of the distribution can make the assessment
of the exponent of the distribution difficult. A way to resolve

Figure 1 Two MLDs computed from the comparison of different subsets
of the human and the mouse genomes. The first MLD was computed
from the comparison of the RepeatMasked noncoding part of both ge-
nomes (blue crosses) and the second is the result of the comparison of the
coding part of these genomes (red crosses). Dashed lines represent
power-law distributions with exponents a ¼ 24 and a ¼ 2 5: All data
are represented using a logarithmic binning to reduce the sampling noise
(Newman 2005); see Materials and Methods for more details.
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this issue is to increase the size of the bins with the value of
the horizontal axes and normalize the data accordingly.
Namely, the observed values for each bin are divided by the
size of the bin. The most common choice to do this is known as
the logarithmic binning procedure, which consists of increasing
the size of the bin by a constant factor. Note that by doing so, we
dramatically reduce the number of data points and some in-
formation is lost as we aggregate different data points together
in the same bin. Therefore it is often useful to consider both
representations, with and without the logarithmic binning. See
Newman (2005) for more details on the logarithmic binning
procedure and on power-law distributions.

Estimating the value of the power-law exponent: To esti-
mate the value of the exponent of the power-law a, we com-
pute the maximum-likelihood estimator. The estimator â is
simply the value of a that maximizes the log-likelihood L,

L ¼
Xn

i¼1

�
lnða2 1Þ2 lnðxminÞaln

�
xi

xmin

��
; (2)

such that

â ¼ 2 12 n

"Xn

i¼1

ln
�

xi

xmin

�#21

; (3)

while the value of xmin has to be determined visually. This
estimator is also sometimes referred to as the Hill estimator
(Hill et al. 1975).

To estimate the robustness of the value of the exponents
found using this method, we proceeded to bootstrap exper-
iments on the human to mouse exome comparison. For each
bootstrap, we sampled 5% of the mouse exons and compared
them to all human exons. In each experiment, we calculated
the exponent of the MLD, using the maximum-likelihood
estimator as described in Newman (2005). We repeated this
procedure 100 times. Values of a were all in the range [–4.7,
–5.2] and the mean value for the exponent was a = –4.9.

Data availability

All genomes and their specific annotations (such as repeat
elements and exons) were downloaded from the ensembl
website (Cunningham et al. 2015), using the Perl API (version
80); the corresponding release of the human genome is
GRCh38. In all cases, we downloaded the RepeatMasked ver-
sions of genomes publicly available in the ensembl databases.

Perl, R, and C++ scripts used to simulate the data and
compute the match lentgh distributions are available at https://
github.com/Flomass/MaLenDi. The MUMmer pipeline is freely
available online (http://mummer.sourceforge.net/).

Results

Theory

The stick-breaking model: Before we turn to the detailed
description of our model, let us shortly introduce some relevant

results on random stick breaking. Consider a stick of length K at
time t ¼ 0; which will be sequentially broken at random posi-
tions into a collection of smaller sticks. Breaks occur with rate m

per unit length. The distribution of stick lengths at time t,
denoted by mðr; tÞ; follows the integro-differential equation

@

@t
mðr; tÞ ¼ 2m  r  mðr; tÞ þ 2m

Z N

r
mðs; tÞds (4)

(Ziff and McGrady 1985; Massip and Arndt 2013), where thefirst
term on the right-hand side represents the loss of sticks of length r
due to any break in the given stick and the second term represents
the gain of sticks of length r from the disruption of longer sticks.
Note that for any stick of length s. r; there are two possible
positions at which a break would generate a stick of length r.

The initial state is one unbroken stick of length K; i.e.,
mðr; 0Þ ¼ dðK; rÞ: The corresponding time-dependent solution is

mðr; tÞ ¼
8<
:

�
2t þ t2ðK 2 rÞ�expð2trÞ for  0, r,K;

expð2trÞ for  r ¼ K;
0 otherwise

(5)

(Ziff and McGrady 1985), where we define the rescaled time
t ¼ mt: Apart from the singularity at r = K, which accounts
for the possibility that the stick is not even broken once, the
distribution is dominated by an exponential function; i.e.,
there are far more small sticks than long ones. The average
stick length is given by �mðtÞ ¼ K=t:

The match length distribution of evolving sequences: The
above stick-breaking process can be used to describe the
breakdown of a long DNA match into several smaller ones

Figure 2 The different contributions to the match length distribution.
Sequence 1 was duplicated in the ancestral species I. This duplication
gives rise to two paralogous sequence pairs: sequence 1 in A with se-
quence 2 in B (red dashed line) and sequence B 1 and sequence A 2.
Sequence 1 in A is orthologous to sequence 1 in B (blue dashed line), and
sequence 2 in A is orthologous to sequence 2 in B. For clarity, we high-
light only one pair for each case.
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by substitutions in either one of the two copies of the
match. In a comparison of two species, A and B, long iden-
tical segments are the signature of homology relation-
ships between the two sequences. These homologous
sequences either result from the copy of the genetic ma-
terial during the time of speciation and are then ortholo-
gous sequences (see the blue dashed line in Figure 2) or
are due to segmental duplications in the ancestral ge-
nome, i.e., paralogous sequences (see the red dashed line
in Figure 2) (Fitch 2000).

The MLD is then given by the integral

MðrÞ ¼
Z N

0
NðtÞmðr; tÞdt; (6)

where NðtÞ is the number of homologous sequences with
divergence t and mðr; tÞ is given in Equation 5; see also
Massip et al. (2015). The divergence between a pair of
orthologous sequences is the sum of two contributions
t ¼ mA;i   tsp þ mB;i   tsp; where tsp is the time since the two spe-
cies diverged and i is an index for regions in the genomes. The
regional mutation rates mA;i and mB;i in the two species are
themselves distributed and assumed to be independent from
each other. We therefore define NAB as

NABðtÞ ¼
Z t

0
NAðtAÞNBðt2 tAÞdtA; (7)

where NAðtÞ [resp. NBðtÞ] is the number of sequences with
divergence t from the last common ancestor I in species A
(resp. B). However, if the two regions are paralogous, the
divergence t is a sum of three independent contributions
t ¼ mA;itsp þ ðmI;iþmI; jÞtdup þ mB; jtsp; where tdup represents
the time elapsed between the segmental duplication and
the split of the two species. There are NAIBðtÞ paralogous
sequences with divergence t; with

NAIBðtÞ ¼
Z t

0

Z t2tA

0
NAðtAÞNIðt 2 tA 2 tBÞNBðtBÞdtBdtA:

(8)

For our purposes we are not interested in the full functional
form of the distributions in Equations 7 and 8 but have to
consider only their behavior for small t/0; because long
matches [and thus the tail of the distribution of the match
length distribution M(r)] stem from homologous exons that
exhibit a small divergence t. A more general discussion
about the functional form of the distribution of pairwise
distances can be found in Sheinman et al. (2015). We there-
fore take the Taylor expansion of the distributions N(t)
around t¼ 0: Using Leibniz’s formula to take the derivative
under the integral sign (Flanders 1973), we find for orthol-
ogous exons

NABðtÞ ¼ NAð0ÞNBð0Þt þO�
t2	 (9)

(see details in File S1) and subsequently the match length
distribution

MABðrÞ ¼
Z N

0
NABðtÞmðr; tÞdt

¼ NAð0ÞNBð0Þ 6K 2 2r
r4

�NAð0ÞNBð0Þ 6K
r4

(10)

(Massip et al. 2015), as K � r. In contrast, expanding Equa-
tion 8 around t¼ 0 finds

NAIBðtÞ ¼ 1
2

NAð0ÞNIð0ÞNBð0Þt2 þO�
t3	 (11)

(see details in File S1). Thus, for paralogous pairs, the num-
ber of regions with divergence t increases as t2 in the small t

limit. Therefore the match length distribution exhibits a
power-law tail with exponent a ¼ 2 5;

MAIBðrÞ ¼
Z N

0
NAIBðtÞmðr; tÞdt

¼ NAð0ÞNIð0ÞNBð0Þ 12K 2 6r
r5

�NAð0ÞNIð0ÞNBð0Þ 12K
r5 ;

(12)

as K � r.
Depending on the number of orthologous sequences Qortholog

and paralogous sequences Qparalog; we will be able to distin-
guish two regimes: one where the MLD follows an a ¼ 2 4
power law and one where it follows an a ¼ 2 5 power law.
From Equations 10 and 12, it is straightforward to find that the
crossover point rc between those regimes (see Figure 3) is at

rc ¼ 2NIð0Þ: (13)

Recall that NIð0Þ is defined as the number of paralogous seg-
ments that have not mutated even a single time since the
duplication event at the time of the split. Thus, this term is
proportional to the ratio of the duplication rate over the
mutation rate. If NIð0Þ � 10; there are significantly more

Figure 3 Schematic drawing of the match length distribution in a double
logarithmic plot. The two regimes exhibiting a 24 and 25 power law
(solid lines) are separated by a crossover point. For very small match
lengths the geometric distribution due to random matches, see Equation
1, dominates (dotted line).
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paralogous sequences compared to orthologous ones and
the crossover value, rc; is large. Then, only the a ¼ 2 5
power-law tail will be observed. On the other hand, if
NIð0Þ � 10; then the crossing point rc is expected to
be ,20 such that the a ¼ 2 5 power law holds only for
lengths where the distribution is already dominated by ran-
dom matches. In contrast to previous models (Massip et al.
2015), this model does take into account the contribution of
paralogous sequences and can explain both power-law be-
haviors and therefore predicts the crossing point between
the two regimes.

Numerical validation

Our theoretical considerations predict a complex behavior of
the match length distribution under the described evolution-
ary dynamics.The key ingredients are segmentalduplications,
generating paralogous sequences in an ancestral genome, and
point mutations that break identical pairs of homologous
sequences of the two genomes into smaller pieces. To illustrate
our theoretical predictions concerning the two power laws,
as well as the existence of the crossover point rc; we simu-
lated the evolution of sequences according to the discussed
scenario.

We describe the evolution of a genome of length L accord-
ing to two simple processes, point mutations and segmental
duplications. Point mutations exchange one base pair by an-
other one and occur with rate m per base pair and unit of time.
To mimic the existence of regions under different degrees of
selective pressure, we allow for regional differences of the
point mutation rates. Segmental duplications copy a contig-
uous segment of K nucleotides to a new position where it
replaces the same amount of nucleotides, such that the total

length of the genome stays constant. Segmental duplications
occur with rate l per base pair.

Our simulation has two stages (see Figure 2). At time t = 0,
we generate a random i.i.d. sequence S: During a time t0; this
sequence evolves according to the two described processes.
In this first stage, the mutation rate is the same for all posi-
tions. At the end of this stage, the sequence represents the
common ancestral genome of two species. At the beginning of
the second stage, we copy the entire sequence of the common
ancestor to generate the genomes of the two species A and B.
These sequences are then subdivided into M continuous re-
gions of equal length. In each such region j, the point muta-
tion rates mA; jðresp:mB;jÞ are the same for all sites i and are
drawn from an exponential distribution with mean m(i.e., the
point mutation rate during the first stage). We chose the
exponential distribution because it stipulates the least infor-
mation under the given constraints. For more details about
the simulation procedure, see File S1, Appendix A.

We show the result of the comparison of simulated se-
quences in Figure 4, left. We obtain a power-law tail in
the match length distribution, which for match length
20, r, 100 has an exponent a ¼ 2 5 and an exponent
a ¼ 24 for longer matches r. 100: For simulated se-
quences, we can easily classify homologous sequences into
orthologous and paralogous sequences (while for natural se-
quences, paralogs and orthologs are not easily distinguish-
able due to genomic rearrangements). We show the MLD
obtained from the comparison of paralogs and the MLD
obtained from the comparison of orthologs for simulated
sequences in Figure 4, right. We can clearly observe that
orthologous sequences generate an a ¼ 2 4 power-law dis-
tribution while paralogous matches generate an a ¼ 2 5

Figure 4 The MLD computed from 10,000 simulated sequences according to the procedure described in the main text. Data are represented using the
logarithmic binning. On the left, we show the MLD computed from all possible matches, while on the right, we represent two different MLDs: one
computed from paralogous matches only (red) and one computed from the orthologous matches only (blue). We can see that the two different MLDs
cross close to the expected crossing value rc ¼ 100:
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power-law distribution. We can further easily identify the
crossing point rc as the value of r for which we obtain more
matches from the comparison of orthologs than from the
comparison of paralogs.

In the previous section the value of this crossing point
between the two regimes was predicted to be rc ¼ 2NIð0Þ
(see Equation 13), where NIð0Þ is the number of paralogous
segments with a divergence t¼ 0 just before the species
split. In our simulation procedure, NIð0Þ is simply the num-
ber of sequences that have been duplicated but that have
not been mutated yet at the splitting time t ¼ t0: This num-
ber is known to be NIð0Þ ¼ lL=mΚ (Massip and Arndt 2013).
In our simulations, l¼ 0:05; m ¼ 1; K ¼ 1000; and L ¼ 107

and therefore we predict rc ¼ 100; which is in good agree-
ment with our observations in Figure 4. The results of our
simulations are thus in good agreement with our analytical
predictions.

Discussion

We developed a simple model that accounts for power-law
tails in the length distribution of exact matches between
two genomes. Our model assumes regional differences of
the selective pressure such that the substitution rates in a
region are drawn from a certain distribution. However, for
naturally evolving exons the selective pressure varies also
on shorter length scales. For instance, some nucleotides
for many codons can be synonymously substituted by
another one, mostly at third codon positions. Therefore,

these substitutions at third codon positions occur with a
higher rate than nonsynonymous ones. Hence, exons are
expected to break preferentially at positions 3n, with n 2 ℕ;

such that the matches with 100% identity would have
lengths 3nþ2 with integer n: Classifying genomic matches
according to the remainder that is left when dividing their
length by 3, we observe an almost 10-fold overrepresen-
tation of matches with length 3nþ2 over matches of
lengths 3n and 3n þ 1; see Figure 5. This suggests that
the match-breaking process is dominated by the synony-
mous mutation rate

Using the presented model, the puzzling observation of an
a ¼ 24 power-law tail in the MLD in the comparison of the
human and mouse genomes and a corresponding a ¼ 2 5
power-law tail in the comparison of their exomes can be
explained. Although the sequences stem from the same spe-
cies, the relative amount of paralogous to orthologous se-
quence segments is different in the two data sets, which
subsequently leads to different crossover points rc: Because
of the selective pressure on coding exons, the number of non-
mutated paralogous sequences at the time of species diver-
gence NIð0Þ is higher (relative to the number of orthologous
sequences) in the exonic data set than in the noncoding data
set. Thus, the crossover point in exomes rc is larger than the
longest observed match and only the a ¼ 2 5 power law can
be observed.

The opposite is true for matches in the alignment of
noncoding sequences. Quantitatively, in this set, paralogous
sequences play a lesser role and therefore only the a ¼ 2 4
power law is observed (see Figure 1). This is surprising, as
the duplication rate is thought to be roughly the same in the
coding and noncoding parts of genomes. To confirm this
paradoxical observation, we classified matches according
to the uniqueness of their sequences in both genomes. As-
suming that unique matches are more likely to be ortholo-
gous, this gives us a rough classification of homologs into
orthologs and paralogs, although matches unique in both
sequences can be paralogs. After the classification of all
matches, our analysis made apparent that matches unique
in both genomes dominate the MLD in the comparison of
the noncoding parts of the genomes, while matches with
several occurrences in either (or both) of the genomes dom-
inate the distribution in the case of the comparison of
exomes (see File S1, Figure S2). Moreover, we computed
the MLD from the set of nonunique matches of the noncod-
ing part of the genomes. In this comparison, the contribu-
tion of paralogs is expected to be much higher than in the
full set. As expected, this MLD also exhibits an a ¼ 2 5
power law (see File S1, Figure S2), confirming that the
relative contribution of orthologs and paralogs is respon-
sible for the shape of the MLD. These differences in the
proportion of paralogous sequences in the coding and
noncoding DNA are likely due to the fact that paralogs
are more often retained in the coding part than in the non-
coding part of genomes. Since there are many more non-
coding sequences in both genomes, we also observe at least

Figure 5 The MLD computed from the comparison of the human and
the mouse exome, represented without logarithmic binning. Three differ-
ent colors are used to represent matches of length 3n; 3nþ 1; and
3nþ 2: Dashed lines represent power-law distribution with exponents
a ¼ 24 and a ¼ 25:
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10 times more matches in the comparison of noncoding
sequences than in the comparison of exomes.

The presented model does not account for changes in the
divergence rates after a duplication, a phenomenon that is
well documented following a gene duplication (Scannell
and Wolfe 2008; Han et al. 2009; Panchin et al. 2010;
Pegueroles et al. 2013). To assess the impact of this phe-
nomenon on the MLD, we performed simulations where
the two paralogous segments are assigned different and
independent mutation rates. Interestingly, these simula-
tions yield results qualitatively similar to those of the sim-
pler model introduced above (see File S1, Figure S3). This
new condition does not affect the value of the number of
paralogous sequences that have not diverged at the time of
the split [i.e., the value of Nj (0)] and thus the shape of the
distribution.

The model we present is very simple, and more realistic
models of genome evolution include many more evolutionary
processes (Dalquen et al. 2012). For instance, we could in-
clude a transition/transversion bias in the mutational pro-
cess, variations of mutation rates in time, a codon usage
bias, or different rates of duplication within and between
chromosomes. Since in the end we consider just identical
matching sequences and want to explain the power-law tail
in the MLD, all these additional model details are not
expected to affect the results.

In this article, we demonstrate that on the genome-wide
scale, the length distribution of identical homologous se-
quence segments in a comparative alignment is nontrivial
and exhibits a power-law tail, and we propose a simple model
able to explain such distributions. While paralogous se-
quences, which had been duplicated before the species di-
verged, generate a power-law tail with exponent a ¼ 2 5;

orthologous sequences generate a power-law tail with expo-
nent a ¼ 2 4: Depending on the relative amount of paralo-
gous to orthologous sequences there is a crossover between
these two power-law regimes. The exponent of the power-
law tail in the comparative MLD can therefore be a litmus test
for the abundance of paralogous relative to orthologous se-
quences, while it is usually difficult to distinguish between
orthologous and paralogous sequences using classical bio-
informatic methods (Studer and Robinson-Rechavi 2009;
Dalquen et al. 2013; Gabaldón and Koonin 2013). If paralo-
gous sequences dominate, the crossover occurs for a large
value of r and the apparent exponent is equal to 25; other-
wise it is equal to 24:

Our method is very easy to apply. In particular, it does not
require that genomes are fully assembled as long as the
continuous sequences are .1 kbp, comparable to the longest
matches one expects. A natural extension of our method
would be to apply it to sequences from metagenomic samples
to assess relative amounts of paralogous and orthologous
sequences. However, we would also have to consider hori-
zontal gene transfer, which is common among prokaryotes
and generates homologous sequence segments even between
unrelated genomes. Our computational model can easily be

extended to take into account these and other more complex
biological processes, using, for instance, already developed
tools (Dalquen et al. 2012). This would allow us to assess their
impact on our results and will be the subject of future work.

This study shows that even very simple models can often
successfullybeapplied to seeminglyvery complexphenomena
in biology. We were able to present a minimal model for the
evolution of homologous sequences that includes effects due
to segmental duplications and evolution under selective
constraints—the two processes that are responsible for a
power-law tail in the length distribution of identical match-
ing sequences.
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Appendix A: Simulating the Evolution of DNA Sequences397

To simulate our evolutionary models, we proceeded as follows. A sequence of nucleotides398

S = (s1, . . . , sL) of length L with si ∈ {A,C,G,T} is evolved through time in small time399

intervals ∆t. The time intervals ∆t are small enough such that for all considered evolutionary400

processes E of our model, which are assumed to occur with rate ρE, we have ρEL∆t � 1.401

At each step, random numbers uEi for all positions i and possible evolutionary processes E402

are drawn from a uniform distribution. The event E then occurs at position i if uEi < ρE∆t.403

These steps are repeated until the desired time t has elapsed.404

Sequences evolve according to two simple processes, point mutations and segmental du-405

plications. Point mutations exchange one nucleotide by another and occur with rate µ per406

bp and unit of time. Note that to mimic the existence of regions under different degrees of407

selective pressure we allow for regional differences of the point mutation rates. Segmental408

duplications copy a contiguous segment of K nucleotides starting at position c and paste409

them to a different position v, such that the K nucleotides at positions v to v + K − 1 are410

replaced by the ones from position c to c + K − 1. As a consequence, the total length of411

the sequence L stays constant in time. The segmental duplication process occurs with rate412

λ per bp and per unit of time.413

The evolutionary scenario of our simulation has two stages, as shown in Fig. 2. At time414

t = 0, we start with a random iid sequence S with equal proportions of all 4 nucleotides.415

During a time interval of length t0, this sequence evolves according to the two described416

processes. In this first stage, the mutation rate is the same for all positions. At the end of417

this stage, the sequence represents the common ancestor of the two species.418

At the beginning of the second stage, we duplicate the entire sequence of the common419

ancestor to generate the genomes of the two species A and B. These sequences are then420

subdivided intoM continuous regions of equal lengths. The point mutation rates µA,j (resp.421

µB,j) are the same for all sites in a given region j and are independently drawn from the422

same exponential distribution of mean µ, i.e. the point mutation rate during the first stage.423

For simplicity, the length of theM continuous regions is set toM = K and the segmental424

duplication rates in both species λ during the second stage are set to zero. Both species then425

evolve independently for a divergence time tsp, and we compute the MLD from a comparison426

of the sequences of the two species A and B. Note that even when we chose finite duplication427
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rates after the split (i.e. λ > 0 in the second stage), we obtained qualitatively similar MLDs.428

To control for the potential impact of our choice to keep the genome size constant on our429

results, we also simulated the evolution of sequences where duplicated segments where added430

to the sequences (thus generating growing genomes). In that case, duplicates were added431

at the very end of the sequence, such that duplicates do not disrupt pre-existing matches.432

This control experiment yields qualitative similar results, in agreement with our theoretical433

considerations (data not shown).434

Appendix B: Calculation of the derivative of NAIB435

In this section we describe the Taylor expansion that leads to Eq. (11) from the main436

text. The Taylor expansion for NAIB in the neighborhood of τ = 0 results in437

NAIB = NAIB(0) +N ′AIB(0)τ +N ′′AIB(0)
τ 2

2
+N ′′′AIB(0)

τ 3

6
+O(τ 4) . (S1)

From Eq. (8) in the main text, it follows that the first term always vanishes. Using438

Leibniz formula to take the derivative under the integral sign in Eq. (8), we find for the first439

derivative440

N ′AIB(τ) =

ˆ τ

0

(ˆ τ2

0

NB(τB)NA(τ2 − τB)N ′I(τ − τ2) dτB
)
dτ2

+

ˆ τ

0

NI(0)NB(τB)NA(τ − τB) dτB . (S2)

It follows that the first derivative of NAIB(τ) at τ = 0 vanishes. For the next term, we get441

N ′′AIB(τ) = NA(0)NI(0)NB(τ) (S3)

+

ˆ τ

0

NI(0)NB(τB)N ′A(τ − τB) dτB

+

ˆ τ

0

(ˆ τ2

0

NB(τB)NA(τ2 − τB)N ′′I (τ − τ2) dτB
)
dτ2

+

ˆ τ

0

NB(τB)N ′I(0)NA(τ − τB) dτB +NA(0)NI(0)NB(τ) . (S4)

Here, all terms but the first one vanish for τ = 0. Similarly, we can calculate the third442

derivative of N(τ), and we find that for τ = 0443

N ′′′AIB(τ) = NA(0)NI(0)N ′B(τ) +NA(0)N ′I(0)NB(τ) +N ′A(0)NI(0)NB(τ), (S5)
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such that Eq. (S1) finally takes the form444

NAIB(τ) =
1

2
NA(0)NB(0)NI(0)τ 2

+
1

6
(N ′A(0)NB(0)NI(0) +NA(0)N ′B(0)NI(0) +NA(0)NB(0)N ′I(0)) τ 3

+O(τ 4) . (S6)

Therefore, as long as445

τ � 3
NA(0)NB(0)NI(0)

N ′A(0)NB(0)NI(0) +NA(0)N ′B(0)NI(0) +NA(0)NB(0)N ′I(0)
, (S7)

NAIB(τ) is expected to scale as τ 2 and subsequently M(r) ∼ r−5.446
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Figure S1. MLDs computed from the comparison of the exome of several species. In all four

panels, dashed lines represent power-law distribution with exponent α = −4 and α = −5, and

empirical data are represented using logarithmic binning. MLDs represented are computed from

the comparison of the exomes of (A) Human and Chimp, (B) Mouse and Rabbit (C) Human and

Turkey (D) Human and Zebrafish.

22



+

+

+

+

+
+

+
+

+
+

+
+

+ +
+

+ +

+
+ +

+

+

+

+

+

+

+

+
++ +

+ + +
+

+
+

+
+

+
+

+
+

+
+

+
+ +

+
+

+ +
+

+
+ +Match length

N
um

be
r 

of
 m

at
ch

es

20 50 100 200

100

102

104

106

+
+

Multiple matches
Unique Matches
r−4

r−5

Figure S2. MLD computed from the comparison of subsets of the non-coding part of Human and

Mouse genomes. Also the non-coding part of these genomes contains paralogous sequence segments

from segmental duplications before the species split. To enrich for such sequences we partitioned

the genomes into two subsets. Using self-alignments of the two species, we first created two libraries

containing the sequences of all exact matches within their non-coding part. This library is thus be

enriched for sequences duplicated before and after the speciation. Subsequently the two libraries are

compared and their MLD (multiple matches, red data points) shows the expected −5 power-law.

As a control, the complements of the two libraries show an −4 power-law (unique matches, blue

data points).
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Figure S3. The MLD computed from 1000 simulated sequences according to the procedure described

in the main text, but in this case, after any duplication event, the two copies are randomly assigned

a new mutation rate, drawn from the mutation rate distribution (i.e. an exponential distribution

of mean 1). Data are represented using the logarithmic binning. On the left panel, we show the

MLD generated computed from all possible matches, while on the right panel, we represent two

different MLDs: one computed from paralogous matches only (red), and one computed from the

orthologous matches only (blue). One can see that the results of these simulations hold qualitatively

and quantitatively similar results as the one presented in the main text on Fig. 4.
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