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ANALYZING OR EXPLAINING BETA
DIVERSITY? COMMENT

Raphaël Pélissier,1,4 Pierre Couteron,1,2 and

Stéphane Dray3

In a recent paper, Tuomisto and Ruokolainen (2006,

hereafter referred to as TR) discussed the domains of

application of the so-called ‘‘raw-data approach’’

compared to the ‘‘distance (Mantel) approach’’ for

studying and testing hypotheses about patterns and

determinants of beta diversity. Following Legendre et al.

(2005, hereafter referred to as LBP), they addressed the

dilemma of an either/or approach in reference to a

conceptual framework made of three different ‘‘levels of

abstraction’’ depending upon the ecological question to

be addressed and thus on the response variable to be

studied: (1) community composition data; (2) variation

in community composition data or beta diversity; or (3)

variation in beta diversity, i.e., variation in variation in

community composition data.

TR contradicted LBP, however, by claiming that only

the third level of abstraction is relevant to address

ecological hypotheses involving geographic distance

such as the dispersal limitation underlying the neutral

theory of biodiversity (Hubbell 2001). More specifically,

they considered that submitting matrices of distances/

dissimilarities in community composition to multiple

regression along with Mantel tests is the only way to

test such hypotheses (TR: p. 2700).

We disagree with such a restrictive vision and the

main purpose of our comment is to show that spatially

explicit, distance-based analyses of beta diversity do not

necessarily belong to the so-called third level of

abstraction, let alone to multiple regression on distance

matrices and can, moreover, be viewed as a prolonga-

tion of the raw-data approach, in accordance with the

overall concept of variance partition. This emerges from

a general definition of alpha and beta diversity

components as functions of variance in species identity

among individuals within and among communities,

which is homologous to the definitions of diversity

adopted in various other domains and especially in

population genetics (e.g., Lewontin 1972, Nei, 1973,

Rao 1982). In the sequel, we will show that such a

definition leads naturally to an additive relationship

between the portions of species diversity explained and

unexplained by external environmental variables. We

believe, just like Lande (1996), that this partitioning

model is fully consistent with the well-rooted ecological

notions of alpha, beta, and gamma diversity, even

though Whittaker (1960, 1972), who introduced them,

initially referred to an analytical multiplicative relation-

ship (see Veech et al. 2002 for a recent review of the two

approaches). We will then demonstrate that this additive

framework based on well-mastered techniques of var-

iance/covariance decomposition is also encompassing

the double variance-partitioning scheme with respect to

explanatory variables and principal components of the

canonical analysis advocated by both LBP and TR in

their second-level raw-data approach. Finally, we will

show how, based on a rewriting of the beta component

as a measure of dissimilarity, the concept of variogram

leads to a direct distance-based additive apportionment

of beta diversity, which doesn’t require the invocation of

a third level of abstraction nor of a Mantel tests

approach. We shall finally discuss the goals of potential

methods for third-level analyses of the variance among

intersite dissimilarities, which is a variance of a variance

as correctly presented by LBP. Throughout the text, our

arguments are supported by specific references to and

commentaries of LBP and TR.

First level, within-community diversity

On the argumentation that basically in ecology ‘‘the

raw-data tables [. . .] consist of the observations of the

abundances of one or more species [. . .] in more than one

study site [. . .]’’, TR (p. 2698) defined community

composition as first-level data. By that, they diverged

from the proposition of LBP (p. 436) that a first-level

analysis consists in ‘‘studying variation in species

identity of individuals at a given site [which] is studying

alpha diversity,’’ an idea brought from genetics to

ecology by Lande (1996). This opposition is all the more

surprising given that TR say a little farther (p. 2702) ‘‘it

is important to notice that species composition is not an

entity that has ecological behavior of its own, but it is a

result of how individuals belonging to different species

behave.’’ Indeed, from this last statement, which has our

full support, the basic response variable of diversity

analyses appears unambiguously to be the taxonomic
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5558, Laboratoire de Biométrie et Biologie Evolutive, 43
Boulevard du 11 Novembre 1918, Villeurbanne F-69622
France.

4 E-mail: Raphael.Pelissier@mpl.ird.fr

3227



identities of the n individual organisms recorded

according to a reference nomenclature during a given

field survey, i.e., a taxonomic relevé, considered as
representative of a given study area or region. For the

purpose of data analysis, a straightforward translation

of such a list is a binary random variable, say Yij, which
indicates whether an arbitrary individual (1 � i � n)

belongs to a particular species (1 � j � s). This can be

written in matrix form as follows:

Y½yij� ¼
1 if the ith observation belongs to species j

0 otherwise
:

(

Matrix Y (n 3 s) is called an individual 3 species-

occurrence table, from Gimaret-Carpentier et al. (1998).

When the list is comprised of individuals encountered in
a set of m sampling sites (but this is, from our

perspective, already and blatantly a second-level prob-

lem; see next section), summing per site the individual
rows of Y yields a usual site3 species abundance matrix,

say A[akj] with size (m 3 s), which is a ‘‘shrunken’’

version of Y (n 3 s). From either Y or A table, the
relative frequency of species j in the taxonomic relevé is

given as

pþj ¼
1

n

Xn

i¼1

yij ¼
1

n

Xm

k¼1

akj ð1Þ

and its (uncorrected) variance (Lande 1996) as

SVj ¼
1

n

Xn

i¼1

ðyij � pþjÞ2 ¼ pþjð1� pþjÞ: ð2Þ

Furthermore, the most popular diversity indices can be

directly computed as a weighted sum of the SVj values
over the s observed number of species:

TD ¼
Xs

j¼1

wjSVj: ð3Þ

Indeed, taking the weighting function wj equal to one,

whatever the species, means quantifying the total

diversity of the taxonomic relevé via the Simpson index,
whereas taking wj ¼ 1/pþj or wj ¼ log(1/pþj)/(1 � pþj)

means relying on total species richness (minus 1, i.e., s –

1) or on the Shannon index, respectively (Pélissier et al.
2003). In the following discussion we refer to these three

measures of species diversity as the usual diversity

metrics, while additional metrics are thinkable from
other definitions of wj.

Lessons learned.—(1) Contrary to TR, but in accor-

dance with LBP, we believe that a first-level analysis
consists in characterizing the within-site/community

diversity, regardless at this point whether there is or

not overlap in species composition (i.e., shared species)
between different sites or communities. (2) A simple

general expression of the within-community diversity,

which encompasses the most popular diversity indices, is

the generalized, multivariate variance given by TD (Eq.

3). (3) When the taxonomic relevé is limited to a single

sampling site, TD measures alpha diversity of that site;

when the taxonomic relevé is comprised of individuals

encountered in a set of sampling sites distributed over an

ecological region, TD measures gamma diversity.

Second level, explaining among-communities variation

Can the spatial variation in the abundance of a given

species or the variation in community composition, i.e.,

in the abundances of all the species that form a

community at a time, be explained by variation in

environmental characteristics and/or geographical loca-

tion? These ecological questions raised by TR (pp. 2698–

2699) are, with respect to both theirs and LBP

nomenclature, level-two questions to be addressed via

the raw-data approach, i.e., using canonical analysis

sensu Legendre and Legendre (1998). While we fully

agree with this idea, we have to remember that canonical

analysis is a two-step process, which involves a multiple

linear regression, followed by principal component

decomposition (Legendre and Legendre 1998). Hence,

the above ecological questions are first and foremost

specified as a general multivariate linear model equation

(the first step of the canonical analysis [Pélissier et al.

2003, Pélissier and Couteron 2007]), for which we

believe that our first-level individual 3 species-occur-

rence matrix, Y, introduced in the previous section, is a

much more appropriate ‘‘response variable’’ than the

classical site 3 species abundance matrix, A, as in TR

and LBP. Associated to any form of linear model is of

course an additive scheme of variance partitioning

(Lebart et al. 1997:228), advocated in a spatially explicit

context by LBP (pp. 440–441).

Taking matrix Y (n 3 s) as the response variable and

introducing X (n 3 q) a matrix of dummy variables

coding for habitat types as the ‘‘explanatory variable,’’ it

can be demonstrated that TD, the total variance in

species identity among the n individuals of the commu-

nity (Eq. 3) partitions into an explained or among-

habitat component (TDA) and an unexplained residual

or within-habitat component (TDW) (Couteron and

Pélissier 2004), so that our first-step linear model enters

within the additive diversity partitioning framework

proposed by Lande (1996). This establishes a clear

analytical relationship between our first and second

levels of abstractions, which is holding for any usual

diversity metric provided that the appropriate choice of

the weighting function wj is made:

TD ¼ TDWþ TDA ¼
Xs

j¼1

wjSVWj þ
Xs

j¼1

wjSVAj: ð4Þ

To be more specific, we can denote by nk the number of

observations in habitat k, with
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n ¼
Xm

k¼1

nk

and by pkj ¼ akj/nk the relative frequency of species j in

habitat k, akj being as above the abundance of species j

in habitat k. The approximation of Y by multiple linear

regression on the variables contained in X is ŷij(k)¼ pkj
(Pélissier et al. 2003), from which we can derive explicit

formulas for SVWj, the contribution of a given species j

to TDW, the mean within-habitat diversity (or alpha

diversity as defined in the previous section), and for

SVAj, which is the contribution of j to TDA, the among-

habitat diversity (or ‘‘between-habitat’’ diversity, an

expression used as a synonymous for beta diversity by

Whittaker [1972:230]). Namely

SVWj ¼
Xm

k¼1

nk

n
� pkjð1� pkjÞ ð5Þ

SVAj ¼
Xm

k¼1

nk

n
� ðpkj � pþjÞ2: ð6Þ

Couteron and Pélissier (2004) also provided explicit

formulas for SVWj and SVAj for nested partitions (i.e.,

for subsequent partitions of SVAj among habitat types

and sampling locations), as well as guidelines on the

nonparametric testing of statistical significance based on

randomization procedures. The decomposition frame-

work lends itself to tests based on random shifting

procedures (as introduced by Harms et al. 2001), which

upon availability of fully mapped or regularly sampled

data are preferable for distinguishing between habitat

effects and clumping effects unrelated to habitat.

Moreover, in this well-established framework, which is

encompassed by multivariate analysis of variance

(MANOVA sensu Anderson 2001), multilevel hierarchi-

cal analyses are more straightforward than the approach

proposed by Crist et al. (2003). MANOVA is indeed

very general and applies either to questions about

individual species’ habitat preferences (testable via SVj)

or to variation in community composition (analyzable

through TD).

Lessons learned.—(1) Contrary to TR statement, a

direct relationship between alpha and beta diversity can

be expressed through a simple general linear model that

leads from the first to the second level of abstraction;

consequently, it is only when gamma diversity is ignored

that alpha diversity tells nothing about beta diversity. (2)

The complementary nature of alpha and beta compo-

nents of diversity established by Whittaker’s work has

long been hidden because authors have quantified alpha

diversity by indices (e.g., Fisher’s alpha, Shannon and

Simpson indices) that have no direct connection with

dissimilarity measures used to quantify beta diversity

(e.g., Jaccard, Sorensen, and Steinhaus indices). (3) Our

model is closely related to the linear model that underlies

classical canonical analysis; but using as the response

variable, the individual species-occurrence matrix, Y, in

lieu of the site species abundance matrix, A, is the only

way to relate the raw-data approach to gamma diversity,

via its natural, additive apportionment into a part

explained (beta diversity) and a part unexplained (alpha

diversity) by variation in environmental conditions

(second level of abstraction). (3) Standard routines

derived from MANOVA as well as nonparametric tests

of statistical significance, which can be based either on

randomization or random shifting procedures, are

available to conduct these analyses.

Second level, the ‘‘raw-data’’ approach

In the previous section, we focused on the variance

(diversity) partitioning scheme associated to the gener-

alized linear models. We now turn to the one associated

to the principal component decomposition, which is the

core subject of multivariate analysis, including the

canonical raw-data approach as referred to by LBP

and TR. One can indeed recognize in

TDA ¼
Xs

j¼1

wj �
Xm

k¼1

nk

n
� ðpkj � pþjÞ2

(Eq. 4 and 6) an expression of the total inertia or total

variance (i.e., the sum of all eigenvalues) of the

correspondence analysis (CA; Legendre and Legendre

1998) of the site3 species abundance matrix A when wj¼
1/pþj, and non-symmetric correspondence analysis

(NSCA; Gimaret-Carpentier et al. 1998) of A when wj

¼ 1. Taking wj¼ log(1/pþj)/(1� pþj) also leads to a form

of column weighted correspondence analysis whose

inertia is consistent with Shannon diversity (see the

proofs in Pélissier et al. 2003). Total inertia demonstrat-

ed by the site3 species abundance matrix, A, is therefore

the part of total community diversity (TD) explained by

the dummy variables that partition the individual 3

species-occurrence matrix, Y, into sampling sites. This

quantifies between-site beta diversity, expressed consis-

tently with any of the three usual diversity metrics using

the species weighting function, wj.

It follows that two-table variants of ordination

methods such as CCA (canonical correspondence

analysis) or RDA (redundancy analysis), whose partic-

ular forms can be made compatible with the usual

diversity metrics (see Couteron and Ollier 2005), realize

a first-stage additive partition of TDA into ‘‘explained’’

and residual ‘‘unexplained’’ portions by a set of

environmental descriptors, before permitting a subse-

quent additive decomposition of either the explained or

the residual fraction into canonical ordination axes

(constrained vs. unconstrained ordinations, respective-

ly).

Lessons learned.—(1) The so-called ‘‘raw-data ap-

proach’’ is directly related to the additive partitioning
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framework of species diversity proposed by Lande

(1996), a fact which is completely absent in LBP and

TR. (2) It follows that ordination techniques provide

subsequent apportionment of TDA according to princi-

pal axes, in a way that can be made consistent with the

usual diversity metrics. (3) Thus, canonical partitioning

in the classical sense of Legendre and Legendre (1998)

refers to total inertia (or variance) of the site 3 species

abundance table, A, i.e., to the among-site beta diversity

(TDA), which is the only part of community total

diversity, TD, accounted for by the sampling design. (4)

Explained or unexplained portions of TDA relative to a

set of environmental descriptors can subsequently be

additively partitioned into canonical vs. partial canon-

ical ordination axes.

From the ‘‘raw-data’’ approach to distance-based analyses

According to TR (p. 2697, 2703, 2705), the fact that

beta diversity can be viewed as a distance (or more

generally a dissimilarity) is the main justification for

using the Mantel approach and to move from second to

third level of abstraction, where the response variable is

a dissimilarity matrix between pairs of sites. That beta

diversity is usually quantified via dissimilarity indices, is

used however to instill the misleading idea that it is not

conceivable to consider ‘‘the variation in community

composition, i.e. beta diversity’’ in the light of the

geographic locations of the sites or of the inter-site

distances. Though it is not blatantly stated as such, this

idea is conveyed in many places of the paper, by rhetoric

tricks or omissions. For instance, in Fig. 2, it is as if an

analysis of inter-community or inter-site geographic

distance, could not be used to explain variation in

community composition. Why should using the inter-

site geographic distance as an explanatory variable

automatically mean skipping to an analysis of the

variation in variation in community composition, i.e.,

to a third-level question? There is absolutely no

compelling reason to do so, since several alternatives

are possible.

In fact, TDA, which is a variance according to our

definition, can be rewritten as a sum of intersite

dissimilarities, and directly broken down into additive

portions relating to classes of inter-site distance. Indeed,

a classical result of variance decomposition (in its

broader meaning) is that averaging squared departures

around a mean value is equivalent to averaging squared

differences (i.e., distances) between individual observa-

tions (see for instance Anderson 2001). It follows that

the contribution of species j to the among-site beta

diversity, SVAj (Eq. 6), can be rewritten as

SVAj ¼
Xm

k¼1

Xm

k 0¼1

SVAjðk; k 0Þ ¼ 1

2n2

Xm

k¼1

Xm

k 0¼1

nknk 0ðpkj � pk 0jÞ2:

ð7Þ

At the multispecies level,

SVAðk; k 0Þ ¼
Xs

j¼1

wjSVAjðk; k 0Þ

is a measure of dissimilarity between composition in

sites k and k0 (it is in fact a mathematical distance),

which may be made fully consistent, through wj, with
any of the three usual diversity indices. Summing

SVA(k, k0) values for all (k, k0) pairs of sites yields the

among-site beta diversity:

TDA ¼
Xm

k¼1

Xm

k 0¼1

SVAðk; k 0Þ:

A distance-dependent partition of TDA follows from

the dissimilarity measure defined above. As soon as a set
fHhg of nonoverlapping distance classes is defined, the

portion of the total among-site beta diversity relating to

a given distance class centered on h is

TDAðhÞ ¼
X

dðk;k 0Þ2Hh

SVAðk; k 0Þ

¼
X

dðk;k 0Þ2Hh

Xs

j¼1

wjSVAjðk; k 0Þ: ð8Þ

When the union of Hh contains the range of intersample

distances, we logically derive the following from the

above expression:

TDA ¼
X

h

TDAðhÞ:

Alternatively, standardizing TDA(h) for the number of

plots and individuals (see Couteron and Pélissier [2004]

for details) in each distance class provides a dissimilarity
variogram or, equivalently, a generalized, multivariate

variogram, which can be plotted as a function of the

intersite geographical distance and tested against the
null hypothesis of an absence of spatial structure by

randomly reallocating the taxonomic compositions

among the sampling sites (Wagner 2004).

We note that TR (p. 2701) mention the variogram in a

way that seems to involve the computation of a variance
of intersite dissimilarity, i.e., in this case a variance of

variance, and thus a third-level object. But according to

the usual definition, the variogram expresses how
intersite dissimilarity changes with distance by directly

apportioning the overall variance of the response

variable with respect to distance classes and dividing

by the number of pairs of sites in each class. This does
not involve the computation of a variance of intersite

dissimilarity, and it is therefore not at all congruent with

their definition of third-level analysis.

The principle of multivariate variography (sensu
Wackernagel 1998) can be applied not only to TDA,

but also to any partition of TDA into principal/canon-

ical axes yielded by a given single- or two-table
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ordination method (see Couteron and Ollier 2005 for an

illustration). Hence, combining these different principles

constitutes a very rich and flexible yet largely unexplored

framework for comparing the effect of environmental

variables on the observed relationship between beta

diversity and intersite distance. Moreover, in our model,

the part of total community diversity explained by

external explanatory variables, ordination axes, or

distance classes is quantified in the same measurement

unit (one of the three usual diversity metrics, albeit this

is not an absolute restriction), so that their relative

proportions of explained total community diversity can

be directly compared. This ultimately allows one to

measure the respective influence of environment and

space on diversity variation.

Lessons learned.—(1) TR seems to have missed that

the among-site beta diversity can be seen as a sum of

dissimilarities between all pairs of sites; such dissimilar-

ities can be expressed in any of the three usual diversity

metrics. (2) TDA is therefore amenable to an additive

apportionment with respect to classes of intersite

geographical distance, which can be combined in many

ways using the potential of ordination methods, thereby

reviving the concept of multiscale ordination (MSO;

sensu Ver Hoef and Glenn-Lewin 1989, Wagner 2003,

2004); MSO is a straightforward extension of the raw-

data approach. (3) Statistical tests of significance for the

existence of nonrandom spatial structure exist and can

also be applied to residual patterns after factoring out

the effect of environmental descriptors; for instance, the

absence of any significant residual spatial pattern would

mean that dispersal limitation is probably not a

pervasive factor in the communities under study.

Third-level analyses: for what and how?

In the previous points, we have gradually shifted from

a raw-data to a distance-based analysis framework. The

transition has been smooth because both frameworks

rely on additive partitions of variance and covariance

(used here in their generalized meaning; see Couteron

and Ollier [2005]). Our method of carrying out distance-

based analyses nevertheless does not pertain to the third

level of abstraction as defined by TR.

We have not considered the variance among intersite

beta-diversity values, which is a variance of variance,

whereas TDA is simply a generalized variance that

allows weighting of either sites or species. Nor have we

tried to model individual intersite beta-diversity values

from either environmental or spatial variables, which is

the goal of multiple regression on distance matrices as

presented by Duivenvoorden et al. (2002) and Tuomisto

et al. (2003). This clearly demonstrates that reference to

third level analyses is not a prerequisite for investiga-

tions into how beta diversity may be influenced by

environment discrepancies and/or intersite distance.

There is thus no reason to share the opinion of TR

that distance-dependent ecological hypotheses, such as

the neutral theory of biodiversity, can only be tested

using the Mantel approach, although we agree that

canonical partitioning, which is the core of what is

usually meant by the raw-data approach, is by itself not

sufficient to address such hypotheses. In fact, the

framework for distance-based analyses, which we have

briefly summarized above, permits one to investigate

and test any distance-based ecological hypothesis,

including the neutral ones. For instance, based on

theoretical results borrowed from population genetics,

Chave and Leigh (2002) and Etienne (2005) featured

explicit predictions under neutrality with respect to

Simpson’s intersite beta diversity (or to the closely

related intersite similarity function), which may be used

in the near future to derive analytical expectations of the

multivariate variogram under neutral assumptions. It is

hence not yet established that reference to the third level

of abstraction will, by itself, permit more efficient testing

of distance-based ecological hypotheses than the frame-

work described in From the ‘‘raw-data’’ approach to

distance-based analyses.

The first level of abstraction basically computes alpha

diversity from a vector of species abundances. The

second level deals with variation in abundances observed

by a particular survey, which means comparing the

abundance vectors making the site 3 species table or,

equivalently, submitting this table to eigenanalysis

and/or canonical partitioning (the raw-data approach).

The objective of the third level should not be defined

only from comparison of distance matrices via a Mantel

test, since its broader objective is ultimately to compare

diversity patterns found in distinct surveys, hence to

compare the structures present in several site 3 species

tables. Indeed, if surveys share either sites (e.g.,

diachronic relevés) or species (at least most of them),

there are appealing alternatives to distance-matrix

comparisons (Dray et al. 2003, Thioulouse et al. 2004),

which probably use more of the available initial

information of the set of site 3 species tables. It is only

when surveys share neither sites nor species (e.g.,

different ecological regions) that comparisons of dis-

tance matrices and Mantel tests may justify themselves.

Compared to the broad panel of aims and data types

characterizing ecological investigations, these are in fact

far more restrictive circumstances for using the Mantel

approach than it may appear from reading TR.
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ANALYZING OR EXPLAINING BETA
DIVERSITY? COMMENT

Etienne Laliberté1

Tuomisto and Ruokolainen (2006; hereafter referred

to as TR) have recently argued that there has been

confusion about what statistical approaches, ‘‘raw data’’

or ‘‘distance,’’ are more appropriate when testing

hypotheses about the origin and maintenance of beta

diversity. They also argued that ‘‘inconsistencies and

errors in [the] recommendations’’ of Legendre et al.

(2005; hereafter referred to as LBP) gave way to more

confusion on this issue. Essentially, TR stated that both

the raw-data and distance approaches were appropriate,

but targeted different predictions and should therefore

be seen as complementary. However, TR’s method of

variation partitioning on distance matrices is based on

an inaccurate definition of spatial autocorrelation,

which makes the ‘‘spatial’’ fraction meaningless. Conse-

quently, that method is unable to quantify the relative

contribution of neutral processes to beta diversity. In

any case, TR have provided no answer to the doubts

expressed by LBP over the mathematical validity of

variation partitioning on distance matrices, and simply

claimed that as their method targeted a ‘‘different
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response variable’’ than the raw-data approach, its use

was justified. Finally, the recommendation of TR that

the distance approach is the only appropriate approach

for testing Hubbell’s (2001) neutral theory is incorrect.

Here I will discuss these issues in more detail.

What is spatial autocorrelation?

In their Ecological vs. statistical hypotheses section (p.

2703), TR describe the predictions of the neutral model

as follows:

Community composition is heterogeneous over the

landscape at all spatial scales as a result of the

cumulative effects of spatially autocorrelated random

walk in species abundances. This spatial structure is

entirely due to autocorrelation, and spatial dependence

on underlying environmental variables is not present.

While their description of the neutral model is accurate,

the statistical prediction they derive from it is that (p.

2703):

From [the neutral] hypothesis (. . .) it follows that two

nearby sites should share more species in more similar

abundances than two sites further apart.

That statistical prediction is inaccurate because spatial

autocorrelation is not defined as the tendency of two

nearby sites to be more similar than faraway sites (which

would imply a simple monotonic decrease of similarity

with increasing geographic distance), but is instead

defined as ‘‘the property of random variables taking

values, at pairs of locations a certain distance apart, that

are more similar (positive autocorrelation) or less similar

(negative autocorrelation) than expected for randomly

associated pairs of observations’’ (Legendre 1993). A

more formal and mathematically satisfying definition of

spatial autocorrelation is ‘‘the lack of independence [. . .]

among the error components of field data, due to

geographic proximity’’ (Legendre and Legendre 1998:9).

This distinction may appear trivial, yet it has

important implications in the present debate. Even

though random neutral processes may create spatial

autocorrelation in the vegetation data and lead to a

monotonic decrease in similarity (or conversely, to an

increase in dissimilarity) with increasing geographic

distance when there is species turnover (i.e., replace-

ment) across a sampled transect or surface, this is not

necessarily so, for instance, in the case of ubiquitous

species. Simply put, there is no clear and unambiguous

link between spatial autocorrelation and similarity decay

with distance. Consequently, regressing community

composition dissimilarity on geographical distances

(log-transformed or not) to quantify the contribution

(using R2) of neutral processes to variation of beta

diversity between pairs of sites, which is the goal of TR’s

method of variation partitioning on distance matrices, is

fundamentally incorrect. While such a regression is often

used in similarity decay plots to fit a particular model

(Nekola and White 1999), the coefficient of determina-

tion (R2) should be interpreted as nothing more than a

simple measure of the adjustment of that model to the

data.

It is important here to distinguish two research

questions: The objective of variation partitioning (either

in the raw-data approach or in TR’s variation parti-

tioning on distance matrices) is not to quantify the

strength of spatial autocorrelation in the data (which can

be calculated through Mantel correlograms), but to

quantify its relative contribution to the overall pattern.

There is no link between the strength of spatial

autocorrelation and its relative contribution to beta

diversity. For example, spatial autocorrelation can be

small (i.e., low Mantel r in an autocorrelogram) yet

explain most of the variation of community composition

if all of this variation is spatially structured and there is

no dependence on environmental variables. In any case,

the R2 of a logarithmic similarity-decay curve is neither

related to the strength or relative contribution of spatial

autocorrelation to beta diversity.

Neutral theory and similarity decay plots

TR’s statistical prediction to test the neutral model in

the context of variation partitioning on distance

matrices appears to stem from a direct, yet unfounded,

extension of Hubbell’s (2001) use of similarity decay

plots (Nekola and White 1999) to test neutral theory. In

chapter seven of his seminal monograph, Hubbell

predicted that under neutral ecological drift community

composition similarity across the landscape will decrease

logarithmically with geographical distance, because at

such scales dispersal limitation leads to clumped species

distributions, and therefore to high species turnover.

The similarity decay with distance is greatly influenced

by grain size (i.e., resolution) and spatial extent (i.e.,

area), with the best relationships observed with large

grain sizes and spatial extents (Nekola and White 1999).

Indeed, a decay of similarity will be detected only if the

variation due to grain size is smaller than the variation

due to spatial extent (Nekola and White 1999), a

condition rarely met from censuses conducted at local

scales. As such, Hubbell used similarity decay plots to

make predictions about the importance of neutrality on

beta diversity only at broad spatial scales (i.e., biogeo-

graphical scales), and these predictions are based on the

functional form of the decay curve, not through variation

partitioning between geographical and environmental

distances. Hubbell argued that, since neutral theory

predicts that similarity decay happens on environmen-

tally homogeneous landscapes, the decay curve should

be smooth (i.e., logarithmic) and only depend on the

fundamental biodiversity number h and dispersal rate m

(Hubbell 2001). On the other hand, under niche-

assembly theory, similarity decay results from species
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FIG. 1. Two cases of neutral communities. (A) Abundances of 10 species along a 100-m transect; only three species are shown
on the graph for clarity. Data for each species were generated from a series of random numbers (one every meter) between 0 and
100 taken from a standard normal distribution, to which spatial autocorrelation was added by computing moving averages
(window width¼ 5, i.e., the value plus the two neighbors on either side). (B) Abundances of 10 species along a 100-m transect; only
the first nine species are shown. Data for each species were generated the same way as in panel (A), with the exception that species
turnover along the transect was added by restricting the first nine species to limited but overlapping parts of the transect. (C)
Mantel correlogram associated with panel (A). Hellinger distance was used for calculating community composition dissimilarity.
Black squares indicate significant spatial autocorrelation after progressive Bonferroni correction (a ¼ 0.05, 999 permutations).
Positive Mantel r values express positive spatial autocorrelation. (D) Mantel correlogram associated with panel (B); see description
of panel (C) for explanation. (E) Relationship between community composition dissimilarity (Hellinger distance) and geographical
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turnover along environmental gradients or habitats; the

associated similarity decay will not be smooth because

habitats are typically patchy, recurrent, and have sharp

boundaries (Hubbell 2001).

This neutral prediction should be restricted to the

interpretation of broad-scale patterns in similarity decay

plots, yet TR erroneously extend it to all spatial scales

and use a matrix of log-transformed geographical

distances to quantify the contribution of neutral

processes in variation partitioning on distance matrices

from any sampling design, regardless of grain size and

spatial extent. Such a method, on top of being

mathematically doubtful, can greatly underestimate the

importance of neutral processes when many or all

species are ubiquitous, which can often happen at local

spatial scales or in species-poor systems. Again, this is

because there is no clear link between spatial autocor-

relation and distance decay of similarity. I will show this

through the simple following numerical example.

A simple numerical example

Let us imagine a transect where environmental

conditions are completely homogeneous throughout,

so that no variation in community composition can be

attributed to environmental control. Ten species are

found along the 100-m transect (note that it could very

well be 100 mm, cm, or km), but in two different

arrangements (Fig. 1A, B; for clarity, not all species are

shown on the graphs). In Fig. 1A, abundance data were

generated from a series a 100 random numbers between

0 and 100 taken from a standard normal distribution,

from which spatial autocorrelation was added by

computing moving averages (window width ¼ 5, i.e.,

the value plus the two neighbors on either side). In Fig.

1B, the exact same procedure was followed, with the

exception that species turnover was added by restricting

the first nine species to limited but overlapping parts of

the transect. Thus, in both cases, variation of commu-

nity composition is entirely due to random but spatially

autocorrelated walks in species abundances, a purely

neutral process. As it can be seen from Mantel correlo-

grams (Fig. 1C, D), there is significant spatial autocor-

relation in community composition at several distance

classes in both cases.

This simple numerical example shows that when

spatial autocorrelation leads to gradual species turnover

(Fig. 1B), which is frequently observed at broader

spatial scales, a good relationship between community

composition dissimilarity and geographical distance (the

inverse of a similarity decay plot) can be found (Fig. 1F).

Conversely, when species are ubiquitous (Fig. 1A), such

a relationship is very much weaker (Fig. 1E).

By extending this to the context of variation

partitioning, as TR suggest, one would partition the

variation of beta diversity between pairs of sites (i.e., the

response matrix) between a matrix of environmental

distances (representing the environmental control mod-

el) and a matrix of log-transformed geographical

distances (representing the neutral model). I must stress

that I do not support the use of this method given that

serious doubts have been expressed over its mathemat-

ical validity. Indeed, perhaps the main problem with

variation partitioning on distances matrices is that the

isolated fractions are not additive. Surprisingly, TR

appear to be aware of this fact, as they mention (p. 2707)

that in this method, ‘‘R2 values will change depending on

[. . .] whether all environmental variables are combined

into a single distance matrix or used in separate

matrices.’’ This seriously undermines the credibility of

the method itself, as it is very much unclear how the R2

coefficients should be interpreted if the fractions

themselves are not additive. Another problem concerns

the potential, albeit unknown, effects of the lack of

independence among the distances on the coefficients

themselves (Legendre et al. 2005:442). Still, I will assume

here that the method is valid (which clearly remains to

be shown) and use it nonetheless to illustrate that on top

of being doubtful, this method also greatly underesti-

mates the contribution of neutral processes.

In that numerical example, environmental conditions

are identical throughout the transect, so the environ-

mental matrix would be filled with constant values and

would explain none of the variation of beta diversity.

Therefore, the contribution of neutral processes to

variation of beta diversity, as suggested by TR, would

then simply be expressed by the coefficients of determi-

nation of the logarithmic relationships shown in Fig.

1E, F. This would lead one to conclude that in Fig. 1A,

,5% (taken from the R2 of the logarithmic model) of the

observed pattern was due to neutrality, whereas in Fig.

1B, ;77% of the pattern would be attributed to neutral

processes. Such conclusions are obviously inaccurate

given that, in both cases, patterns were entirely due to

random, spatially autocorrelated walks in abundances, a

purely neutral process. Here it is clear that using a

matrix of log-transformed geographical distances to

quantify the contribution of neutral processes can

greatly underestimate their actual importance, particu-

larly when most or all species are ubiquitous (e.g., Fig.

1A). Again, this is because spatial autocorrelation does

not necessarily imply, for multi-species data, that two

 
distance (i.e., inverse of a similarity-decay plot) from the data of panel (A). The curve shows the logarithmic relationship with its R2

value. (F) Relationship between community composition dissimilarity (Hellinger distance) and geographical distance from the data
of panel (B); see description of panel (E) for explanation.
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nearby sites will be more similar (multivariate similarity)

than two faraway sites, as suggested by TR’s statistical

prediction. In other words, TR use an inaccurate

statistical prediction to quantify the contribution of

neutral processes to variation of beta diversity, and to

test that prediction they propose and use a doubtful and

unvalidated statistical method.

Variation of beta diversity between pairs

of sites vs. between regions

TR argued that the distance approach targeted

different kinds of questions about beta diversity than

the raw-data approach, which they referred to as

different ‘‘levels of abstraction.’’ LBP had also used this

‘‘level of abstraction’’ concept and mentioned that one

could either be interested in studying the variation of

community composition among sites within a given

region (i.e., beta diversity), or in studying the variation

of beta diversity among groups of sites or regions.

However, variation partitioning on distance matrices, as

proposed by TR, focuses strictly on the variation of

dissimilarities between pairs of sites. Individual pairs of

dissimilarities taken alone do not give a measure of beta

diversity of a large area (Anderson et al. 2006).

Therefore, this method could not answer such questions

as: ‘‘Does beta diversity differ between different groups

of sites (i.e., that contain more than two sites) or

regions?’’ And, more importantly, ‘‘Why does beta

diversity vary between these groups of sites or regions?’’

Hence, even if variation partitioning on distance

matrices could accurately quantify the contribution of

spatial autocorrelation to the variation of beta diversity

among pairs of sites (which, as I have shown earlier, is

not the case), and even if its mathematical validity were

demonstrated (which remains to be done), it would still

be of limited practical use: Indeed, most ecologists that

are truly interested in studying the variation of beta

diversity among groups of sites or regions would likely

want to compare regions in which more than two sites

have been observed. A more appropriate way of

answering questions related to the variation of beta

diversity among groups of sites or regions would be to

use multivariate dispersion on distance matrices, a

method described by Anderson et al. (2006) to

specifically answer such questions.

Testing neutral theory: raw data or distances?

One of the main conclusions of TR was that Hubbell’s

(2001) neutral theory can only be tested using the

distance approach since its testable predictions are

stated in terms of distances and not raw data. Their

main argument against the use of the raw-data approach

to test neutral theory was that the detection of a

particular spatial pattern in community composition

through spatial modeling techniques such as principal

coordinate analysis of neighbor matrices (PCNM;

Borcard and Legendre 2002) does not support neutral

theory because neutral theory does not predict that this

was the expected spatial pattern, and that any specific

spatial pattern is just as much in accordance with the

neutral model as long as the degree of spatial

autocorrelation is similar. I see no contradiction here.

I argue that the detection of a significant residual spatial

structure (i.e., after controlling for variation due to the

environmental variables) provides support for the

theory. This detection is quite easy using the raw-data

approach, unless TR can demonstrate that the neutral

model specifies a type of spatial autocorrelation that

cannot be modelled by PCNM analysis. Given that

previous simulation work has shown that PCNM

analysis could accurately model a wide range of spatial

structures, including spatially autocorrelated data (Bor-

card and Legendre 2002), such a demonstration appears

unlikely.

The PCNM approach is closely related to spatial

autocorrelation structure functions, and essentially

consists in extracting from a predetermined spatial

matrix the eigenvectors that maximize Moran’s index

of spatial autocorrelation (I ); the resulting eigenvectors

describe global to local spatial structures and can thus

be used in regression to model spatial structures at all

spatial scales (Dray et al. 2006). Therefore, the raw-data

approach with PCNM uses explanatory variables that

can model spatially autocorrelated patterns across a

range of scales, and thus allows an accurate quantitative

assessment of the contribution of spatial autocorrelation

to variation in community composition. This is the exact

opposite conclusion of TR, who argued that ‘‘the raw-

data approach fails to address the neutral model in a

relevant way, and is unable either to falsify the neutral

hypothesis or to quantify its relative contribution to the

observed spatial pattern’’ (p. 2704).

Although both the raw-data and the distance ap-

proach can be used to test neutral theory, they both have

their respective domains of application. The raw-data

approach with PCNM has promising applications, since

it allows one to dissect the spatial structures of

community composition at different scales (Borcard

and Legendre 2002) and estimate the relative influence

of niche and neutral processes at each of these scales.

Such tests offer great opportunities for future tests of

neutral theory (McGill et al. 2006), especially consider-

ing that spatial scale has been suggested as a way to

reconcile empirical ecology with neutral models (Holy-

oak and Loreau 2006).

Still, as TR pointed out, a drawback of the raw-data

approach is that it can sometimes be hard to distinguish

between the relative importance of niche and neutral

processes on community patterns because spatial and

environmental variables often covary. The resulting

‘‘space-environment’’ fraction can either be interpreted

as a spatially structured environmental influence con-
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trolling abundance patterns or as neutral processes
acting within a heterogeneous environment (Bell et al.

2006). One way of minimizing that problem is to use a
sampling design that decouples the environmental and
geographical distances (Gilbert and Lechowicz 2004).

The ‘‘pure spatial’’ fraction may often be due to some
spatially structured unmeasured environmental vari-
ables, which can then lead to an overestimation of the

contribution of neutral processes. Hence, to use the raw-
data approach to test neutral theory, one must have
access to relevant, extensive, and accurately quantified

environmental data.
As for the distance approach, the use of similarity

decay plots is appropriate for identifying the best
functional form of a decay curve in a similarity-decay

plot: A smooth similarity-decay curve provides greater
support for neutral theory, whereas a ‘‘bumpy’’ curve
suggests that the environment exerts stronger control

over beta diversity (Hubbell 2001). A drawback of this
approach is that it only allows a qualitative assessment
of the dominant process (i.e., niche or neutrality), yet

does not allow one to quantify their relative importance.
Still, as this method does not require environmental
data, it can be particularly interesting when these are not

available.

Conclusion

Research on the origin and maintenance of beta

diversity has regained great attention since the publica-
tion of Hubbell’s theory. Much theoretical and empirical
work is currently under way to assess the relative

importance of niche and neutral processes on commu-
nity patterns. On the applied side, understanding the
origin and maintenance of beta diversity has important

implications for ecosystem management, such as the
design of nature reserves. Therefore, it is crucial that
researchers master the concepts and methods required
for testing hypotheses about how beta diversity is

maintained in ecosystems.
Throughout this comment I have stressed that an

abusive interpretation of the relationship between the

decay of similarity and spatial autocorrelation, as well as
an unfounded use of Mantel R2 values in the context of
variation partitioning, both proposed by TR, should be

avoided. Variation partitioning on distance matrices, in
addition to being mathematically doubtful and yet
unvalidated, is based on an inaccurate statistical

prediction to quantify the contribution of neutral
processes to variation of beta diversity.
The distance approach is appropriate for identifying

the best functional form of the similarity decay curve in

similarity decay plots. The raw-data approach, on the

other hand, is appropriate to partition the variation of

community composition between environmental and

spatial factors and can accurately quantify the contri-

bution of spatial autocorrelation to variation of

community composition among sites. In summary,

contrary to TR, who argued that only the distance

approach could be used to test neutral theory, both the

raw-data and the distance approaches are useful in

testing different neutral predictions about the origin and

maintenance of beta diversity. Yet, they both have their

domains of application and can thus be seen as

complementary.
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